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A B S T R A C T   

Positron Emission Tomography (PET) has become an important tool for diagnosing abnormalities, 
but it suffers from low spatial resolution and a high-level noise. In this article, a Convolutional 
Neural Network (CNN)-based Single Image Super-resolution (SISR) method is used to produce a 
PET image with a desired quality. The T1-Weighted Magnetic Resonance (MR) images are used to 
enrich the information applied to the network. A network based on U-Net structure is used and 
residual blocks are inserted into the network to improve system performance. This article also 
evaluates the impact of various loss functions, such as Mean Squared Error (MSE) and its com-
bination with a perceptual loss on the efficiency of the proposed method. Peak Signal to Noise 
Ratio (PSNR) and Structural Similarity Index (SSIM) on two various databases (simulated and 
clinical data) are 36.78, 0.9927, and 37.36, 0.9714, respectively, indicating good performance of 
the proposed method compared to previous works.   

1. Introduction 

Positron Emission Tomography (PET) is a non-invasive nuclear medical imaging technology that determines the biochemical and 
metabolic functions of tissues. Since detection of chemical abnormalities provides earlier identification of diseases, this method plays a 
crucial role in the early diagnosis of diseases and disorders, including Alzheimer’s in neurology, cancers in oncology, or stenosis in 
cardiology. 

Also, because of the image degrading factors, such as positron range, non-collinearity of photons, patient motions, a tracer dose, 
and other factors, this imaging method lacks quality and spatial resolution and is impaired by noise. On the other hand, despite the 
success of PET images in metabolic visualization, this method does not provide any information about human anatomy. Combining 
PET imaging technology with modalities, such as Computed Tomography (CT) or Magnetic Resonance Imaging (MRI), provides 
complementary information and allows better localization 

The high-quality medical images can lead to a better diagnosis. Therefore, many image-processing methods have been developed to 
obtain high-quality images. The simplest approach to do this is Super-resolution (SR) whose task is to obtain a high-resolution image 
from one or multi low-resolution inputs. The main work in this method is to recover the information lost during the acquisition process, 
which is mostly a high-frequency component. This means, the Nyquist frequency is not achieved while acquiring an image and the 
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imaging process is done in low frequency and high-frequency details are discarded. On the other hand, noise and geometric artifacts in 
medical imaging are other problems that should be considered. 

Super-resolution methods can be categorized into two groups. The first one is Multi image super-resolution (MISR), where a series 
of low-resolution images with sub-pixel shifts are given. In these methods, images with sub-pixel alignments are acquired from 
different points of view by shifting or rotating the detector or pixel grids, and then, the images are combined, and a high-resolution 
image is reconstructed. Kennedy’s algorithm is an example of this category for PET images [1]. 

In the second one, a single image is used as input called a single image super-resolution (SISR) [2] that can also be split into two 
groups. The first group uses only an image, such as interpolation methods that use mathematical formulas and methods, and 
self-similarities of an image. In the self-similarity-based SR methods, the image is scanned and similar patches are found and utilized to 
estimate missing details for each patch. This method is mostly used in natural images with repetitive textures. The second one uses a 
group of images to learn the relation between Low Resolution (LR) and High Resolution (HR) images (external database of LR-HR 
image pair). 

The dictionary learning and linear regression methods are examples of the second group, which use Machine Learning (ML) 
methods to learn a relationship between LR-HR image pairs [3]. The Convolutional Neural Networks (CNNs)-based super-resolution 
methods are other examples of the last group, which have been introduced recently. 

The rest of the article is organized as follows: related works are given in Section 2. Materials and methods are mentioned in Section 
3. In Section 4, the proposed method is explained in detail. Results and discussion are reported in Section 5, and in the last section, 
conclusions are described. 

2. Related works 

This article proposes a single image super-resolution-based method that uses a convolution neural network. Therefore, a brief 
review of SISR and PET image enhancement by convolutional neural networks is given here. The pioneering CNN-based SR method 
(SRCNN) was introduced by Dong et al. in 2015. It included a shallow network that had three convolutional layers [4]. This method 
showed better performance than previous works but using a low number of layers was the reason for not performing well. In this 
article, adding the number of layers did not increase the performance because choosing a low learning rate resulted in low convergence 
speed. Later, a deeper network with 20 layers, called Very Deep Super-resolution (VDSR), was introduced by Kim et al., which utilized 
global residual learning [5]. This method utilized a high learning rate to converge the network faster; it therefore can use deeper 
networks to enhance performance. This method also utilized up-sampled images as a network input, so it had a higher computational 
cost. 

Subsequently, Super-resolution Generative Adversarial Networks (SRGANs) were introduced, including a generator network and a 
discriminator system [6]. The generator network is a super-resolution ResNet called SRResNet with B residual blocks and skip con-
nections, and solves the gradient vanish problem [7]. The inputs of this method are small down-sampled images that decrease the 
computational cost. However, this network could not create super-resolution images on all scales in one network that was a defect of 
this method. Inspired by SRResNet, Lim et al. proposed the Enhanced Deep Residual Super-resolution (EDSR) [8] method that won the 
NITRE 2017 super-resolution challenge. In this method, batch normalization layers were removed, and as a result, the network used 
less memory, leading to the increased number of layers. A multi-scale method was later introduced to super-resolution at all scales. 

The above-explained methods were examples of natural image super-resolution to overcome the low spatial resolution of PET 
images, some of which applied to PET images are explained below. 

One of the methods to acquire a high-quality PET image is to use high-dose tracer, that can increase the risk of radiation damage. 
Therefore, there have been some efforts to estimate a high-dose PET image from a low-dose one [9–12]. One of these methods has been 
proposed by Kang et al. In this work, a tissue-specific regression forest was used to predict the target high-dose PET image from 
low-dose one and the corresponding MR image. Their work led to an average PSNR of 22.217 on the used clinical dataset [9]. In other 
work, a mapping-based sparse representation was used by Wang to improve the results on the same database that had a dictionary for 
LPET and SPET and a mapping between them. Since sparse coding methods are really time-consuming, this method utilized a patch 
selection-based dictionary that reduced the processing time [10]. Another method has recently de-blurred the PET images by spatially 
variant de-convolution stabilized by MRI [13]. 

Owing to the success of CNNs, specially SRCNN in SR, Xiang et al. tried to use this implementation to have a better and faster 
estimation of high-dose PET images [11]. They concatenated low-dose PET images with T1-weighted MR images and used them as 
input to a basic four-layer CNN. They repeated this architecture three times to have a deeper auto-context like network and a faster 
estimation in the testing stage and higher PSNR than previous works. Although this method required more time to train the network, it 
only took two seconds in the experiment to estimate a high-dose PET image. 

Xu et al. even used a lower dose of tracer [12]. They used 200x low-dose PET images as input to estimate a standard one through an 
encoder-decoder deep network with skip connections called U-Net previously introduced for image segmentation [14]. 

One of the works done recently to obtain a high-resolution PET image using multi-channel inputs has been done by Song et al. [15]. 
Inputs are low-resolution PET, high-resolution MRI, and radial and axial coordinate locations, with high-quality PET images as targets 
and layers of different sizes. The shallow one had three convolutional layers, inspired by SRCNN [4], and the deeper one had 20 layers, 
the same as for the VDSR [5] method. Residual learning was utilized in both networks where differences between LR and ground-truth 
were used instead of completely applying the PET image to CNN. In addition, a Rectified Linear Unit (RELU) layer was used after every 
convolutional layer to speed up training. The results show that the deeper network can estimate better resolution than the shallow one, 
and additionally, when more information is used at the input layer, results achieve higher resolution. 
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Another example of using CNNs for PET image enhancement can be found in [16]. In this method, sinograms of PET images with 
large crystal sizes are used to obtain high-quality images. Malczewski also uses a combination of compressed sensing and 
super-resolution methods to achieve high performance in enhancing the quality of PET images [17]. 

This article proposes a method to increase the resolution of PET images. In order to achieve this purpose, a new network is designed 
based on the capabilities of the state the art CNNs such as U-Net and Res-Net. Both of them are considered successful methods in the 
field of image classification and super-resolution. Hence, the proposed network tries to use the capabilities and designs a single 
network based on them. Of course, while designing the network, the purpose of this article has always been considered, which is super- 
resolution in medical images. So, Changes and adjustments in their structure (U-Net and Res-Net) are made in accordance with the 
purpose of the proposed method. 

Compared to similar works, instead of the MSE criterion, a new method based on MSE and perceptual loss is used for training the 
proposed network. In this way, this article uses a subjective method for network training that is more in line with the goals of super- 
resolution methods. Exploiting MRI images (as input to the network) has an important role in intensifying the quality of PET images. In 
fact, it feeds more detailed information to the network. Hence, this article investigates different methods for simultaneously applying 
MRI and PET images to the network to find the method that has the best performance for PET images super-resolution. 

The main contributions of this article were highlighted in the above two paragraphs. 

3. Materials and Methods 

3.1. Convolutional Neural Networks (CNNs) 

Convolutional neural networks were introduced many years ago, but they recently have shown great performance in many tasks. 
CNNs are a type of multi-layer perceptron neural networks but use local receptive fields. The typical use of CNNs is in classification 

Fig. 1. Examples of high-quality PET images, low-quality PET images and high-quality MR images of the two databases. The upper ones are ex-
amples of simulated database and lower ones are examples of clinical database. 
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tasks, but they have also shown good performance in many other tasks such as object detection, super-resolution, natural language 
processing, etc. In these methods, the convolution operation is done to extract high-level features of the input data. Equation (1) shows 
the operation done in a CNN layer with an activation G. Where x and y are the input and target of the network, respectively, and w and 
b are the weights and biases of that layer, and so “*” is the convolution operator. The aim is to learn the weights and biases. 

y = G(w ∗ x+ b) (1) 

The progress of CNNs depends on using large datasets, parallel computing using GPUs, efficient structures, and tricks, such as 
Rectified Linear Unit (ReLU) [18] and batch normalization (BN) [19], which help to speed up convergence. 

3.2. Inputs to Network 

Since low-quality images and their corresponding high-quality ones are used to train CNNs in image super-resolution and denoising 
tasks, in this method, high-quality PET images are acquired from the dataset. Since there are no low-quality images (corresponding to 
the high-quality type) in the dataset, their low-quality images are obtained from them by some degrading factors in Equation (2) [20]. 
In this Equation, to degrade the PET images, first down-sampling by factor 2 and again, an up-sampling using bicubic interpolation 
method (to have smoother results) are applied. Then, since Poisson noise is considered as a PET imaging system noise, a Poisson noise 
with a mean value of 50 is added to the input image [15]. After that, a motion blur with 15 ◦ angle and 2-pixel length is applied. 

y = DHx+ ε (2)  

where, D is the down-sampling operator, H indicates blurring operator, and ε is additive noise, and then, x and y represent the high- 
quality and low-quality images, respectively, which are used as input and output in network training. 

3.2.1. Database 1 
In order to enhance the accuracy of the proposed method, MR images are also used. Hence, the BrainWeb dataset is utilized for that 

purpose [21]. BrainWeb is a simulated brain image database where simulated MR images are publically available, and then PET images 
are generated from MR images using the BrainWeb library. 20 normal brain images are utilized. 15 brain images from them are used for 
training, and five images for testing. The degrading process explained above is applied to them, and all database images are cropped so 
that only the center part of the images, which contains 176 × 176 pixels, remains. This method prevents us from entering useless 
information into the network. In addition, 55 slices from every brain image in the axial plate are extracted. An example of a low-quality 
PET image, high-quality MR image, and a high-quality PET image is illustrated in the first raw of Fig. 1. 

3.2.2. Database 2 
The Alzheimer Disease Neuroimaging Initiative (ADNI) is also utilized to see the network performance on clinical data [22]. The 

MRI and PET images, which belong to five people, are used for training, and two ones also are used for testing. 100 axial images from 
every person are selected. For this database, the PET images were taken from the HRRT PET scanner, and MR images for the same data 
were acquired from the MPRAGE system. PET images are acquired in the axial plate and MR images in the sagittal plate but registered 
by software. The size of images is 256 × 256. An example of this database is also shown in the second raw of Fig. 1. 

Fig. 2. Two methods for applying MRI and PET images to the network simultaneously. In first type, the images are concatenated and then applied to 
the network, in the second one, the inputs are first entered to a convolution and ReLU layer and then concatenated and applied to the network. 
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4. Proposed Method 

4.1. Inputs to the Network 

In the previous works, which were done in relation to PET image super-resolution and PET image estimation, adding MR images 
increased the efficiency and accuracy of the results [9-11, 13, 15]. Therefore, this article uses MR images along with PET images. The 
proposed method evaluates different methods to apply PET and MRI images simultaneously to the network. In the first method, PET 
and MR images are concatenated and then applied to the network. But in the second one, similar to [15], first, a convolution layer with 
ReLU is applied for every PET and MRI images individually. Then, the concatenation stage is done, as shown in Fig. 2. 

4.2. Network Structure 

The proposed method uses an architecture based on U-Net and ResNet architectures [7, 14,23]. 
A typical U-Net structure has encoder and decoder parts. The inputs are down-sampled in the encoder part and, once again, are up- 

sampled in the decoder part. Since the down-sampling stage can lead to loss of information, a concatenation is done in the channel 
dimension with skip connections to access the lost information. This network was first introduced for medical image segmentation [14] 
and then was used in other tasks such as image reconstruction [12]. For the tasks in which their inputs and outputs are of the same size 
(e.g., segmentation and image generation), U-Net performs well. 

Deep neural networks usually need thousands of images for training, and on the other hand, these numbers of images are not so 
much possible in medical images. Hence, U-Net uses skip connections and data augmentation, which leads to good performance even 
in a limited number of images. U-Net also prevents overfitting, which is one of the advantages of this type of network. A defect of the 
network mentioned above can be the low speed of training. 

It is confirmed that an increased number of layers in a network (depth of the network) can improve the network performance, but at 
the same time, after some layers, the network’s accuracy starts to saturate. The mentioned saturation is not due to overfitting, but the 
main reason is training error. Hence, deeper models have higher training errors than shallower ones, which can be solved using 

Fig. 3. The block diagram of proposed network and a residual block  
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residual learning. In such networks, a shortcut connection in a block skips one or more layers and adds the block’s input to the output 
[7]. This connection does not add any extra parameter or complexity, but as an identity map helps the network have higher training 
error than shallower one. It also avoids gradient vanishes and helps to improve the optimization stage in deep networks. 

As mentioned above, the proposed method designs its network based on U-Net and Res-Net. In a typical U-Net structure, the 
encoder and decoder parts are the same exactly. While in the present study, inspired by [23], residual blocks are added to the encoder 
part to increase the network depth and, as a result, increment the network performance. Utilizing residual block in the U-Net ar-
chitecture can increase the speed of the training process and can help to use a deeper network. Every residual block used in this article 
has two convolution layers, which are followed by Batch Normalization (BN) to speed up convergence [19] and a Rectified Linear Unit 
(ReLU) layer to avoid gradient vanishes [18]. 

The U-Net structure, which is utilized in this work, has three down-sampling and up-sampling stages. Down-sampling is done by 
max-pooling layer, and every time, images are resized to half, but the depth of the feature map is multiplied by 2 to achieve high-level 
features. Up-sampling is done by the sub-pixel up-sampling method, introduced by Shi et al.[24], to avoid transposed-convolution 
layer’s checker board effect. The architecture of the proposed method is shown in Fig. 3. All of the kernel sizes are 3 × 3, but the 
last one is 1 × 1 to map the output to the desired depth. 

4.3. Loss Function 

Mean Squared Error (MSE) loss is one of the famous loss functions used in super-resolution tasks to find the differences between the 
target images and predicted ones, and it is used for optimization. This pixel-based loss function that attempts to approximate the 
predicted image to target one pixel per pixel often leads to blurred results. On the other hand, the PSNR ratio, an evaluation metric in 
super-resolution tasks, would be high for such a predicted image. Equation 3 expresses the MSE loss where yij and ŷij are the value of 
the ith and jth pixel of the target and predicted image, respectively, and also, n and m are the numbers of image pixels in horizontal and 
vertical directions. 

MSE =

∑m

i=1

∑n

j=1

(

yi,j − ŷi,j

)

mn
(3) 

A loss function that is recently utilized and has presented good visual results in super-resolution tasks is the perceptual loss function 
[25]. This loss function encourages the extracted features of the predicted image and target one to be close to each other. Since this is 
not a pixel-based loss function, it can lead to better visual results. This loss function computes the Euclidean distance between extracted 
features (from layers before every max-pooling layer) in a pre-trained network (which usually are VGG networks) and tries to make 
them approach each other. As this function is not a pixel-based loss function, quantitative super-resolution resulting from it may not be 
as good as the previous functions such as MSE and PSNR. The equation below shows the perceptual loss. 

lϕ,jfeat(y, ŷ) =
1

CjHjWj
‖ ϕj(y) − ϕj(ŷ) ‖

2
2 (4)  

where lϕ,jfeat is the perceptual loss at the jth layer of the network φ. Let C, H, and W be the number of channels, height, and width of the 
input image, respectively, which leads to the feature map of shape CjHjWj. φj(y) and ϕj(ŷ) are the features extracted from layer j of the 
network φ for the target image y and predicted image ŷ. 

In this article, to achieve good quantitative results and good visual results, a weighted summation of these two functions is utilized. 
This loss function was first introduced by the FastAI library called feature loss. The pre-trained network used here is VGG16 with batch 
normalization layers. Layers 7, 10, and 13 of this network are used for feature extraction. Equation 5 illustrates the loss function used 
here. 

loss − function = MSE + 2l7 + 3l10 + l13 (5)  

where l7,l10and l13are the perceptual loss computed in layers 7, 10, and 13. 

5. Experiments and Results 

5.1. Evaluation metrics 

Evaluation metrics, including PSNR, Root Mean Squared Error (RMSE), and Structural Similarity Index (SSIM) are used for SR tasks. 
These metrics are explained in Equations 6,7,and 8. 

PSNR = 10.log10

(
MAX2

I

MSE

)

(6)  

RMSE =
̅̅̅̅̅̅̅̅̅̅
MSE

√
(7)  
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SSIM(ŷ, y) =

(
2μŷμy + c1

)(
2σŷy + c2

)

(
μ2
ŷ
+ μ2

y + c1

)(
σ2
ŷ
+ σ2

y + c2

) (8)  

where, MAXI is the maximum intensity of the image, μŷand μyindicates the average of the predicted and target image, respectively.σ ŷ , 

andσ ŷyshow the variance and covariance of the predicted image (ŷ) and target one (y). c1 and c2 are parameters for stabilizing the 
divisions considered equal to (k1L)2 and (k2L)2, respectively, where L is the dynamic range of the image (k1 = 0.01and k2 = 0.03). 

5.2. Experiments on simulated data 

In the first experiment, a comparison is made on how the inputs are applied to the network. In the first one, the PET images are used 
alone for super-resolution. In the next, both types of PET and MRI images are utilized. For applying them simultaneously, as mentioned 
previously, two methods are used in this article. The results were summarized in Table 1. It is inferable from Table 1 that applying two 
types of images simultaneously will improve the system performance. 

Three experiments listed in Table 1, are trained and tested separately for 50 epochs. The learning rate and the kind of optimizer for 
them are the same to have a fair comparison. The learning rate that is a hyper-parameter to control the speed of convergence is set to 1 
× 10− 4 and is multiplied by 0.1 in every 30 epochs. The Adaptive Momentum (ADAM) is chosen as the network optimizer. The 
numbers of 825 axial slices are used for training in a shuffling way, and 275 slices are chosen for testing the network performance. Data 
augmentation is also used to avoid overfitting of the network and increase the input number. This comparison is made on the simulated 
database, called database 1 in this article. Better results are shown in bold type. 

As Table 1 shows, PSNR for the proposed method without using MR images is 25.68, and adding them has increased the network 
performance. The PSNR criterion while using both PET and MRI images (in type 2 of Fig. 2) is increased to 36.78. This is because, as 
mentioned in the previous section, both types of images (MRI and PET) are applied into separate convolution layers with ReLU before 
concatenating them. In this case, instead of concatenating the raw images with each other (type 1), the network itself decides how to 
combine and concatenate the above information, which is the main purpose of convolutional neural networks. 

To evaluate the impact of loss function on the network performance, the proposed network is trained and tested separately on both 
simulated and clinical data with different loss functions. The results are summarized in Tables 2, and 3, and their qualitative results are 
presented in Figs. 4 and 6. The number of epochs is equal to 100, and the learning rate and optimizer in all experiments are the same. As 
expected, the MSE loss function leads to better results in PSNR and MSE. On the other hand, the new loss function, which is a com-
bination of MSE and perceptual loss, presents better visual results. As shown in Figs. 4 and 6, the MSE loss function results in smooth 
edges, but perceptual plus MSE loss results in sharper edges (Of course, this change is not seen in the simulated images). 

In the next experiment, the proposed network is compared with the previous works. In order to make a fair comparison, the 
database used for training and testing of networks, the learning rate, and the degrading stage were considered the same in all networks. 

We compare the proposed network with the networks which are presented in [15] with 3 and 20 layers. In both networks, each 
convolution layer has 64 kernels with a size of 3 × 3 and a RELU unit follows every convolution layer. Also, a U-Net structure, such as 
the method proposed in [12], is used for comparison with a little modification (the up-sampling is sub-pixel up-sampling). Note that 
the U-Net structure is the same as the proposed method, but without residual blocks. The SRResNet network, which is utilized in 
SRGANs, is also implemented with five residual blocks [6]. The results of the mentioned networks and the proposed method are listed 
in Table 2, and better results of each column are written in bold type. In addition, their qualitative results are shown in Fig. 4. 

The numerical results summarized in Table 2 prove the good performance of the proposed network compared to other networks. 
The PSNR performance measure of the proposed method (while using only MSE loss) is 36.78 that is higher than other methods. 

Looking carefully at the results listed in Tables 2 and 3, a fine corollary can be observed. As shown in these tables, the training based 
on the new loss function (a combination of MSE and perceptual loss) decreases PSNR to 35.02 and increases SSIM. This is justified 
because SSIM is a human vision-based perceptual metric and higher SSIM means higher visual quality and more similarity to the target 
image. Since a combination of perceptual loss is used to train the network, the weight updates are done to decrease the perceptual 
errors and increase the SSIM. On the other hand, given that, the network learning method is not fully compatible with the MSE loss, the 
PSNR criterion reduction will not be unexpected. 

As shown in the tables, two popular methods, SRResNet and U-Net, show higher PSNRs, a convenient reason for using them in the 
proposed network. As we explained before and experimental results show, designing a network based on the capabilities increases the 
network’s performance compared to each of them alone. Fig. 5 also shows the level of training loss concerning the number of epochs on 
the simulated data for our proposed network and different methods for comparison. 

Table 1 
Results of comparing different inputs on simulated data  

Method Input Type Loss (MSE) RMSE PSNR SSIM 

Proposed Method PET 0.002570 0.0520 25.68 0.9494 
Proposed Method PET/MRI (1) 0.000570 0.02387 34.45 0.9732 
Proposed Method PET/MRI (2) 0.000207 0.01585 36.78 0.9927  
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5.3. Experiments on clinical data 

In order to evaluate the performance of the proposed network on a real dataset, the clinical data is used for training and testing. The 
quality reduction stage is done on the real dataset is the same as the simulated one. All of the networks, which are explained previously, 
are also trained and tested on real data. The results were summarized in Table 3, and their qualitative results are shown in Fig. 6. 

Table 3 shows that the RMSE criterion for the proposed network is the minimum value. In addition, the PSNR score for our network 
is 37.53, which is higher than other networks. This criterion for the proposed network with a new loss function is 36.44. To justify this 
observation, similar to the simulated data results, it is notable that when a new loss function is used for the training stage, it allows the 
network to reconstruct fine details and edges better while maintaining the precision of quantitative results with acceptable accuracy. 

The similarity between high-quality PET image and the output of the proposed method (new loss function based on the combination 
of MSE and perceptual loss) can be seen in Fig. 6 and in the SSIM value in Table 3. In addition, the outputs of other methods have been 
presented in Fig. 6 for comparison. Hence, in the case of using a new loss function (MSE and perceptual loss), it can be stated that the 
reduction in accuracy of quantitative results is justified by the significant increase in the qualitative results shown in Fig. 6. 

Also, the MSE score concerning the number of epochs on the clinical data is shown in Fig. 7 for the proposed network and other 
methods for comparison. As the figure shows, the proposed network has less training error compared to other networks. 

As mentioned in the related works section, in designing the proposed network, the purpose of this article has always been 
considered, which is PET images super-resolution. In order to accurately design the number of residual blocks in each down-sampling 
stage, another experiment is performed on clinical data. In this experiment, we test other choices for the number of residual blocks to 
clarify this selection’s effect on the network’s accuracy. The results of these experiments were summarized in Table 4, when the 
number of residual blocks is varied in stages one to three. 

It is inferable from Table 4 that the change in the number of residual blocks in stages one and three doses not considerably affect the 
number of evaluation metrics. However, the network performance improves by increasing the number of blocks in the second stage. Of 
course, increasing the number of blocks by more than four does not significantly affect PSNR. Hence, as shown in Fig. 3, the number of 
residual blocks in stages one to three is adjusted to two, four, and two, respectively. 

In order to raise the challenge and evaluate the network performance in a newly defined condition, another experiment is done in 
clinical data. This experiment defines a new condition to produce low-quality images. The down-sampling and up-sampling scale is 
changed to 4, and the mean of added noise is considered equal to 75 (the motion blur is the same as before). The results of such changes 
were summarized in Table 5. 

By comparing the results in Tables 3 and 5, it can be concluded that further quality reduction in input images leads to the decreased 
accuracy of the results (MSE increased, and PSNR and SSEM criteria decreased). Of course, such a conclusion is not unexpected. 
However, it is worth mentioning that the difference between the proposed method’s results and similar works in Table 5 is more 
significant. It can also be interpreted that in a way that in cases where the input image’s quality is severely reduced, the proposed 
network (compared to other networks) has worked better. Also, according to the column of results related to the SSIM criterion in 
Table 5, the proposed training method’s accuracy (MSE+ Perceptual loss) is considerably higher than other methods. 

6. Conclusion 

PET is an imaging modality that plays a crucial role in diagnosing disorders. Nevertheless, this imaging modality suffers from low 

Table 2 
Numerical results of comparing different methods on simulated data  

Method Loss function Loss RMSE PSNR SSIM 

Original MSE 0.037362 0.19402 14.24 0.1732 
3 layer [15] MSE 0.000374 0.01933 34.57 0.9917 
20 layer [15] MSE 0.000373 0.01952 34.21 0.9901 
U-Net [12] MSE 0.000268 0.01701 35.39 0.9926 
SRResNet [6] MSE 0.000254 0.01590 36.01 0.9917 
The proposed method with MSE loss MSE 0.000207 0.01585 36.78 0.9927 
The proposed method with perceptual + MSE loss Perceptual + MSE 0.000507 0.01784 35.02 0.9939  

Table 3 
Numerical results of comparing different methods on clinical data  

Method Loss function Loss (MSE) RMSE PSNR SSIM 

Original MSE 0.033090 0.1826 14.76 0.2632 
3 layer [15] MSE 0.000310 0.0176 35.62 0.9734 
20 layer [15] MSE 0.000252 0.0159 35.98 0.9716 
U-Net [12] MSE 0.000219 0.0148 36.59 0.9421 
SRResNet [6] MSE 0.000176 0.0135 37.26 0.9713 
Proposed Method MSE 0.000175 0.0132 37.53 0.9714 
Proposed Method Perceptual + MSE 0.00452 0.01511 36.44 0.9771  
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spatial resolution and a high noise level. In order to acquire high-quality PET images, there are some methods. The easiest one is to 
create super-resolution images after acquiring them. The proposed method is a single image super-resolution system that receives a 
single image and gives a single high-resolution one. Since the Convolutional Neural Networks recently have achieved good perfor-
mance on various tasks such as SISR, a CNN-based SR system was proposed here. The proposed method designs a network based on the 
capabilities of successful CNNs such as U-Net and Res-Net. This allows us to take advantage of the strengths of the two methods 
simultaneously. Besides, two kinds of datasets were used to evaluate the proposed method’s performance on simulated and clinical 
data. To evaluate the proposed method’s performance, this network was compared with previous methods presented recently, which 
showed better results in terms of PSNR and RMSE performance measures. A new loss function based on MSE and perceptual loss was 
utilized to increase the quality of visual results and SSIM value in the proposed network. Low-quality images were manually obtained 
by the down-sampling of high-quality ones. If generative networks can be used for generating low-quality images and some more 
images to feed as input to the network instead of data augmentation, the results of the network would be more reliable. 
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Fig. 5. Training loss based on MSE concerning the number of epochs on simulated data for different methods. The vertical axis is on a logarith-
mic scale. 

Fig. 6. Three examples of qualitative results for the proposed method with perceptual loss and without perceptual loss criterion. In addition, the 
results of similar networks for comparison are presented in this figure. 
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Fig. 7. Training loss concerning the number of iterations on clinical data for different methods. The vertical axis is on a logarithmic scale.  

Table 4 
Impact of variation in the number of residual blocks on the network performance (based on PSNR, RMSE, and SSIM). The number before “A” shows 
the number of residual blocks in stage one of down-sampling, and also the numbers before “B” and “C” show the number of residual blocks in stage 
two and three, respectively.  

Method Loss function Loss (MSE) RMSE PSNR SSIM 

2A2B2C MSE 0.000439 0.02251 33.04 0.872 
3A2B2C MSE 0.000423 0.02067 33.32 0.881 
4A2B2C MSE 0.000412 0.02029 33.50 0.890 
2A3B2C MSE 0.000395 0.01991 34.85 0.9012 
2A4B2C MSE 0.000351 0.01873 35.41 0.9245 
2A5B2C MSE 0.000352 0.01876 35.34 0.9188 
2A2B3C MSE 0.000437 0.02090 33.12 0.887 
2A2B4C MSE 0.000426 0.02063 33.25 0.891  

Table 5 
Numerical results of comparing different methods on clinical data with higher noise and down sampling scale of 4  

Method Loss function Loss (MSE) RMSE PSNR SSIM 

Original MSE 0.07533 0.2744 11.23 0.2058 
3 layer [15] MSE 0.00066 0.0256 31.82 0.9148 
20 layer [15] MSE 0.00062 0.0249 31.96 0.9169 
U-Net [14] MSE 0.00054 0.0234 32.14 0.9214 
ResNet [6] MSE 0.00052 0.0229 32.56 0.9331 
Proposed Method MSE 0.000497 0.0223 33.03 0.9441 
Proposed Method Perceptual + MSE 0.00740 0.0231 32.41 0.9553  
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